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Motivation

-Increasing demand for climate projections on time scales of one or
two decades and on regional spatial scales (e.g. for water resources,
agriculture, fisheries, insurance)

-Concerns about the possibility of abrupt climate changes

Motivating examples:

| -Rapid decadal-scale loss of Arctic sea ice: July 2012 minimum
2-US drought: summer 2012
3-Atlantic hurricane activity, increased frequency?

For each of these events, how much was a response to radiative
forcing? How much was internal variability? Could they have been
predicted?

Goal: testing retrospective predictions in a mechanistic sense to
assess the skill of future forecasts: detection/attribution of climate
changes.

Predictions on decadal time scales can be of potential use for longer
projections
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GFDL decadal prediction system/Experimental design

Past climate projections focused solely on the response to radiative forcing changes.
Key question: Can we produce better predictions if we use information
describing the initial state of the climate? Part of CMIP5 and IPCC AR5

Model:
Currently use of CM2.] model (2°atm, |°ocean, Delworth et al. 2006)

Initial conditions:

Ensemble Coupled Data Assimilation (ECDA) reanalysis (Zhang et al. 2007)
.Atmosphere NCEP reanalysis (T,u,v,ps)

.Ocean XBT,CTD, satellites,Argo

.Radiative forcing GHG, solar, aerosols,volcanoes

Initialized runs
|0 members ensemble, starting every year from 1960-2012, run for |0yrs (total of more

than 5000 model years). Use observed estimates of radiative forcings 1960-2005, RCP4.5
thereafter

Uninitialized runs:
|0 members ensemble, from 1861-2040. Use observed estimates of radiative forcings

1960-2005, RCP4.5 thereafter

Model outputs available at
http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp



http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp
http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp

( Results: SST anomaly correlations )

GFDL Year 2-5 (Obs= GFDL SST) GFDL Year 6-10 (Obs= GFDL SST)
ACC Uninitialized Hindcast ACC Unlmtlallzed Hindcast

Red: skill due to
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abrupt warming

ECDA OHC anomalies relative to 1971-1990 climatology

" An interesting case study: the 1995 subpolar gyre )
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Climate shift detected in marine ecosystems
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normalized

What happened in 1995?

Observed NAO index from Lohmann et al. (2009)
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Instantaneous
response to NAO
decline?

Or lagged
response to
persistent
positive NAO?

AMOC

Srokosz et al. (BAMS,2012)




Results from GFDL predictions:
the shift is probably not a forced signal

Upper 600m OHC anomalies (seasonal cycle removed)
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Poor skill in the uninitialized experiments. Suggests an internally
driven mechanism rather than radiatively forced

Observed variability of North Atlantic ocean temperature dominated
by the mid 90’s shift.
Is the good skill in the initialized experiments a result of predicting the

shift? Msadek et al. (2012, in prep.)
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, I Results of the initialized predictions
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Why aren’t the other predictions successful? Msadek et al. (2012, in prep.)




Predlcted OHC after the 1995 mltlallzatlon
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OHC evolution suggests advection from subtropics.
AMOC-driven? Msadek et al. (2012, in prep.)




Depth (m)
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Dynamical response to the AMOC
Deep temperature (1000-2500m) initialized in 1995
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Vecchi et al. (2011)

Annual Hurricane Counts

Any predictive skill in the tropical Atlantic?
Statistical/Dynamical model for hurricane predictions

A
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different climates.

Count storms.
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S

1.707+1.388S8ST y;pp —1.52188T rppp

Build statistical model of
the response of
hurricanes in AGCM

Jse climate model to
forecast future values of
Atlantic and Tropical SST

Predicted
SST

20
m— Observed

- == “Perfect Prediction”

16 —

12 —

8_

4_

O— 1T T T T T T 1
1982 1986 1990 1994

1998 2002 2006 2010
Year

Activity

- http://gfdl.noaa.gov/hyhufs

Courtesy Gabriel Vecchi)




J-Year Averagea Nortnh Atlantic Furricanes per Year

Predictions of North Atlantic hurricane frequency in )
two CMIP5 models

5-yr mean predictions

1963- 1973- 1983- 1993- 2003- 2013- 1963- 1973- 1983- 1993- 2003- 2013-
1967 1977 1987 1997 2007 2017 5 1967 1977 1987 1997 2007 2017
| | | | | | | | \ | | | | | | | | | |
Lead 2-6:Initialized \A 5-Year Mean: Uninitialized
8 L 8 | L
| |
7 N \I\ T 7 i
)

== QObserved
> — GFDL-CM2.1 B
| — DePreSys PPE L

Two-model mean

|
6 | \
_ I _
, \ " = Observed
> - | — GFDL-CM2.1 B
' = DePreSys PPE

Two-model mean

4 | I 4 | |

5-Year Averaged North Atlantic Hurricanes per Year

We use the same model as Smith et al. (2010), DePreSys, but different storm counts,
and we add GFDL predictions. Could be generalized to more CMIP5 models in the future

Retrospective initialized predictions encouraging: qualitatively better than uninitialized

Vecchi, Msadek and coauthors (2012, under rev. ))




" Predictions of North Atlantic hurricane frequency in
two CMIP5 models

9-yr mean predictions
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Retrospective initialized predictions encouraging: qualitatively better than uninitialized

Vecchi, Msadek and coauthors (2012, under rev. ))




" Predictions of North Atlantic hurricane frequency in
two CMIP5 models

9-yr mean predictions
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Retrospective initialized predictions encouraging: qualitatively better than uninitialized

Spurious increase after 2003: change in observational system induced changes in
the lead-dependent climatology

Vecchi, Msadek and coauthors (2012, under rev. ))




Anomaly Correlations
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=> Very few effective degrees of freedom
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Results consistent with Smith et al. (2010) except the confidence interval and the
interpretation of skill
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Where does the skill come from?
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Nominal improvement results from better representation of Atlantic MDR when
initializing the models with observations. Natural variability? Forced response?
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Where does the skill come from?
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Where does the skill come from?
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Where does the skill come from?
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The models do not dynamically predict the 1994-1995 shift but rather persist it

=>Implications for future forecasts: won’t be as good as retrospective predictions
unless a change point of similar character happens and we can predict it

Vecchi, Msadek and coauthors (2012, under rev. ))




sSummary

-The Atlantic region shows predictive skill beyond the trend: additional skill from
natural variability

-Looking at case studies, we can assess whether the skill in retrospective predictions

could translate into future skill
The North Atlantic subpolar gyre 1995 shift appears to have a dynamical origin
involving oceanic variability (AMOC). Potential skill in future forecasts

-Encouraging results are found for multi-year predictions of North Atlantic hurricane
frequency but the models are not able to predict the shift in advance: limited skill for

future forecasts. Source of skill not well identified yet.
Looking at other CMIP5S models might help better understand the mechanisms and

identify the uncertainties Challenges

-Challenge to define a climatology with a non-stationary observational system. The
introduction of Argo after 2000 may have changed the character of the drift.

-Initializing the deep ocean could be needed for better predictions if the AMOC is a
source of skill

-Assessing skill requires observational record for verification for all key variables

=> Decadal predictions are at an infant stage but provide a valuable opportunity to
test and improve climate models used for longer-term projections
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Other CMIPS5 results

Internal variability is the main driver of subpolar NA SST changes in the
CMIP5 projections. Strongest sighal to noise ratio likely to be found there

Forced variance/decadal variance Terray (GRL, 2012)
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See also Ting et al. (JOC 2009, 2012)
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Reliability: Do the observations lie between the

predictions spread?
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Can it be because the NAO switched sigh in 1995

and the warming is just the response to NAO-

Qfluxes?
Qflux predicted 6 yrs after

1995 initialization
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Predlcted OHC after' 1992 mltlallzatlon
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Predlcted OHC after' I994 mltlallzatlon
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OHC prediction in the NCAR model
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